What does this number mean ? Which order of 1, 2, 3 and 4 makes the highest value ? Which makes the lowest ?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Find the decimal equivalents of the fractions one ninth, one ninety ninth, one nine hundred and ninety ninth etc. Explain the pattern you get and generalise.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Can you describe this route to infinity? Where will the arrows take you next?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

If a sum invested gains 10% each year how long before it has doubled its value?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Which set of numbers that add to 10 have the largest product?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

The clues for this Sudoku are the product of the numbers in adjacent squares.

What is the same and what is different about these circle questions? What connections can you make?

A plastic funnel is used to pour liquids through narrow apertures. What shape funnel would use the least amount of plastic to manufacture for any specific volume ?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Can you find the area of a parallelogram defined by two vectors?

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Substitute -1, -2 or -3, into an algebraic expression and you'll get three results. Is it possible to tell in advance which of those three will be the largest ?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Explore the effect of reflecting in two parallel mirror lines.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?