What does this number mean ? Which order of 1, 2, 3 and 4 makes the highest value ? Which makes the lowest ?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

The clues for this Sudoku are the product of the numbers in adjacent squares.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

If a sum invested gains 10% each year how long before it has doubled its value?

What is the same and what is different about these circle questions? What connections can you make?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Is there an efficient way to work out how many factors a large number has?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Which set of numbers that add to 10 have the largest product?

Find the decimal equivalents of the fractions one ninth, one ninety ninth, one nine hundred and ninety ninth etc. Explain the pattern you get and generalise.

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

Substitute -1, -2 or -3, into an algebraic expression and you'll get three results. Is it possible to tell in advance which of those three will be the largest ?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Can you find the area of a parallelogram defined by two vectors?

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

A plastic funnel is used to pour liquids through narrow apertures. What shape funnel would use the least amount of plastic to manufacture for any specific volume ?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?