A jigsaw where pieces only go together if the fractions are equivalent.

Can all unit fractions be written as the sum of two unit fractions?

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

The Egyptians expressed all fractions as the sum of different unit fractions. The Greedy Algorithm might provide us with an efficient way of doing this.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

Can you describe this route to infinity? Where will the arrows take you next?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

Explore the effect of combining enlargements.

Explore the effect of reflecting in two parallel mirror lines.

Can you find the area of a parallelogram defined by two vectors?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

The number 2.525252525252.... can be written as a fraction. What is the sum of the denominator and numerator?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?