Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Can you find the area of a parallelogram defined by two vectors?

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

Explore the effect of combining enlargements.

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Two ladders are propped up against facing walls. The end of the first ladder is 10 metres above the foot of the first wall. The end of the second ladder is 5 metres above the foot of the second. . . .

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

If a sum invested gains 10% each year how long before it has doubled its value?

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

There are lots of different methods to find out what the shapes are worth - how many can you find?

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

What is the same and what is different about these circle questions? What connections can you make?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Explore the effect of reflecting in two parallel mirror lines.

Can you describe this route to infinity? Where will the arrows take you next?

If you move the tiles around, can you make squares with different coloured edges?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Can all unit fractions be written as the sum of two unit fractions?

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.