If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

If a sum invested gains 10% each year how long before it has doubled its value?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

What is the same and what is different about these circle questions? What connections can you make?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Can you find the area of a parallelogram defined by two vectors?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

There are lots of different methods to find out what the shapes are worth - how many can you find?

If you move the tiles around, can you make squares with different coloured edges?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Two ladders are propped up against facing walls. The end of the first ladder is 10 metres above the foot of the first wall. The end of the second ladder is 5 metres above the foot of the second. . . .

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

Explore the effect of combining enlargements.

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

Can you describe this route to infinity? Where will the arrows take you next?

Explore the effect of reflecting in two parallel mirror lines.

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?