Can you find rectangles where the value of the area is the same as the value of the perimeter?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

What is the same and what is different about these circle questions? What connections can you make?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

A circle is inscribed in a triangle which has side lengths of 8, 15 and 17 cm. What is the radius of the circle?

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

The number 2.525252525252.... can be written as a fraction. What is the sum of the denominator and numerator?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Start with two numbers. This is the start of a sequence. The next number is the average of the last two numbers. Continue the sequence. What will happen if you carry on for ever?

Each of the following shapes is made from arcs of a circle of radius r. What is the perimeter of a shape with 3, 4, 5 and n "nodes".

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Triangle ABC is isosceles while triangle DEF is equilateral. Find one angle in terms of the other two.

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

Explore the effect of combining enlargements.

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Explore the effect of reflecting in two parallel mirror lines.

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

It is known that the area of the largest equilateral triangular section of a cube is 140sq cm. What is the side length of the cube? The distances between the centres of two adjacent faces of. . . .

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Two ladders are propped up against facing walls. The end of the first ladder is 10 metres above the foot of the first wall. The end of the second ladder is 5 metres above the foot of the second. . . .

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?