Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

A car's milometer reads 4631 miles and the trip meter has 173.3 on it. How many more miles must the car travel before the two numbers contain the same digits in the same order?

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Can you find the area of a parallelogram defined by two vectors?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

There are lots of different methods to find out what the shapes are worth - how many can you find?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

Each of the following shapes is made from arcs of a circle of radius r. What is the perimeter of a shape with 3, 4, 5 and n "nodes".

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Chris and Jo put two red and four blue ribbons in a box. They each pick a ribbon from the box without looking. Jo wins if the two ribbons are the same colour. Is the game fair?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Explore the effect of combining enlargements.

How many different symmetrical shapes can you make by shading triangles or squares?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

Explore the effect of reflecting in two parallel mirror lines.

Can you describe this route to infinity? Where will the arrows take you next?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?