The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

What is the same and what is different about these circle questions? What connections can you make?

Triangle ABC is isosceles while triangle DEF is equilateral. Find one angle in terms of the other two.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Think of two whole numbers under 10. Take one of them and add 1. Multiply by 5. Add 1 again. Double your answer. Subract 1. Add your second number. Add 2. Double again. Subtract 8. Halve this. . . .

Can you find the area of a parallelogram defined by two vectors?

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

A car's milometer reads 4631 miles and the trip meter has 173.3 on it. How many more miles must the car travel before the two numbers contain the same digits in the same order?

A circle is inscribed in a triangle which has side lengths of 8, 15 and 17 cm. What is the radius of the circle?

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Explore the effect of reflecting in two parallel mirror lines.

Explore the effect of combining enlargements.

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Start with two numbers. This is the start of a sequence. The next number is the average of the last two numbers. Continue the sequence. What will happen if you carry on for ever?