The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Start with two numbers. This is the start of a sequence. The next number is the average of the last two numbers. Continue the sequence. What will happen if you carry on for ever?

A car's milometer reads 4631 miles and the trip meter has 173.3 on it. How many more miles must the car travel before the two numbers contain the same digits in the same order?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Triangle ABC is isosceles while triangle DEF is equilateral. Find one angle in terms of the other two.

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Think of two whole numbers under 10. Take one of them and add 1. Multiply by 5. Add 1 again. Double your answer. Subract 1. Add your second number. Add 2. Double again. Subtract 8. Halve this number. . . .

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Explore the effect of combining enlargements.

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

Explore the effect of reflecting in two parallel mirror lines.

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Can you find the area of a parallelogram defined by two vectors?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Can all unit fractions be written as the sum of two unit fractions?

The number 2.525252525252.... can be written as a fraction. What is the sum of the denominator and numerator?

If a sum invested gains 10% each year how long before it has doubled its value?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

A circle is inscribed in a triangle which has side lengths of 8, 15 and 17 cm. What is the radius of the circle?

Chris and Jo put two red and four blue ribbons in a box. They each pick a ribbon from the box without looking. Jo wins if the two ribbons are the same colour. Is the game fair?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Can you describe this route to infinity? Where will the arrows take you next?

How many solutions can you find to this sum? Each of the different letters stands for a different number.