The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

If a sum invested gains 10% each year how long before it has doubled its value?

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

What is the same and what is different about these circle questions? What connections can you make?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

What does this number mean ? Which order of 1, 2, 3 and 4 makes the highest value ? Which makes the lowest ?

If you move the tiles around, can you make squares with different coloured edges?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

Can you describe this route to infinity? Where will the arrows take you next?

Explore the effect of reflecting in two parallel mirror lines.

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

Chris and Jo put two red and four blue ribbons in a box. They each pick a ribbon from the box without looking. Jo wins if the two ribbons are the same colour. Is the game fair?

Can you find the area of a parallelogram defined by two vectors?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

A plastic funnel is used to pour liquids through narrow apertures. What shape funnel would use the least amount of plastic to manufacture for any specific volume ?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Substitute -1, -2 or -3, into an algebraic expression and you'll get three results. Is it possible to tell in advance which of those three will be the largest ?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

There are lots of different methods to find out what the shapes are worth - how many can you find?

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

How many different symmetrical shapes can you make by shading triangles or squares?

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?