Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

How many solutions can you find to this sum? Each of the different letters stands for a different number.

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

How many different symmetrical shapes can you make by shading triangles or squares?

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

Can you find rectangles where the value of the area is the same as the value of the perimeter?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Explore the effect of combining enlargements.

Explore the effect of reflecting in two parallel mirror lines.

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Is there an efficient way to work out how many factors a large number has?

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.