Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

What is the same and what is different about these circle questions? What connections can you make?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Can you find the area of a parallelogram defined by two vectors?

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

How many different symmetrical shapes can you make by shading triangles or squares?

Explore the effect of combining enlargements.

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Explore the effect of reflecting in two parallel mirror lines.

Can you describe this route to infinity? Where will the arrows take you next?

A car's milometer reads 4631 miles and the trip meter has 173.3 on it. How many more miles must the car travel before the two numbers contain the same digits in the same order?

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Can all unit fractions be written as the sum of two unit fractions?

Two ladders are propped up against facing walls. The end of the first ladder is 10 metres above the foot of the first wall. The end of the second ladder is 5 metres above the foot of the second. . . .

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?