Can you find rectangles where the value of the area is the same as the value of the perimeter?

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

What is the same and what is different about these circle questions? What connections can you make?

Can you find the area of a parallelogram defined by two vectors?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

If you move the tiles around, can you make squares with different coloured edges?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

Explore the effect of combining enlargements.

Explore the effect of reflecting in two parallel mirror lines.

Can you describe this route to infinity? Where will the arrows take you next?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Can all unit fractions be written as the sum of two unit fractions?

The Egyptians expressed all fractions as the sum of different unit fractions. The Greedy Algorithm might provide us with an efficient way of doing this.

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

A jigsaw where pieces only go together if the fractions are equivalent.

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?