On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Explore the effect of reflecting in two parallel mirror lines.

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Can you find the area of a parallelogram defined by two vectors?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

What is the same and what is different about these circle questions? What connections can you make?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Can you describe this route to infinity? Where will the arrows take you next?

Explore the effect of combining enlargements.

Can all unit fractions be written as the sum of two unit fractions?

How many different symmetrical shapes can you make by shading triangles or squares?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

Use the differences to find the solution to this Sudoku.

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Find the decimal equivalents of the fractions one ninth, one ninety ninth, one nine hundred and ninety ninth etc. Explain the pattern you get and generalise.

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?