All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

There are lots of different methods to find out what the shapes are worth - how many can you find?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

The clues for this Sudoku are the product of the numbers in adjacent squares.

Use the differences to find the solution to this Sudoku.

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Can you find the area of a parallelogram defined by two vectors?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

How many different symmetrical shapes can you make by shading triangles or squares?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

A car's milometer reads 4631 miles and the trip meter has 173.3 on it. How many more miles must the car travel before the two numbers contain the same digits in the same order?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Is there an efficient way to work out how many factors a large number has?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

Can you describe this route to infinity? Where will the arrows take you next?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

The number 2.525252525252.... can be written as a fraction. What is the sum of the denominator and numerator?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Which set of numbers that add to 10 have the largest product?