A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

Can you find rectangles where the value of the area is the same as the value of the perimeter?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

What is the same and what is different about these circle questions? What connections can you make?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

Two ladders are propped up against facing walls. The end of the first ladder is 10 metres above the foot of the first wall. The end of the second ladder is 5 metres above the foot of the second. . . .

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Each of the following shapes is made from arcs of a circle of radius r. What is the perimeter of a shape with 3, 4, 5 and n "nodes".

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

If you move the tiles around, can you make squares with different coloured edges?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Explore the effect of combining enlargements.

Can you find the area of a parallelogram defined by two vectors?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

A plastic funnel is used to pour liquids through narrow apertures. What shape funnel would use the least amount of plastic to manufacture for any specific volume ?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Explore the effect of reflecting in two parallel mirror lines.

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

Can you describe this route to infinity? Where will the arrows take you next?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

How many different symmetrical shapes can you make by shading triangles or squares?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?