A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Two ladders are propped up against facing walls. The end of the first ladder is 10 metres above the foot of the first wall. The end of the second ladder is 5 metres above the foot of the second. . . .

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

Each of the following shapes is made from arcs of a circle of radius r. What is the perimeter of a shape with 3, 4, 5 and n "nodes".

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

What is the same and what is different about these circle questions? What connections can you make?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Can you find the area of a parallelogram defined by two vectors?

If you move the tiles around, can you make squares with different coloured edges?

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

Explore the effect of combining enlargements.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

Find the decimal equivalents of the fractions one ninth, one ninety ninth, one nine hundred and ninety ninth etc. Explain the pattern you get and generalise.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

The clues for this Sudoku are the product of the numbers in adjacent squares.

Explore the effect of reflecting in two parallel mirror lines.

The number 2.525252525252.... can be written as a fraction. What is the sum of the denominator and numerator?

Can you describe this route to infinity? Where will the arrows take you next?

How many different symmetrical shapes can you make by shading triangles or squares?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

A jigsaw where pieces only go together if the fractions are equivalent.

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

What does this number mean ? Which order of 1, 2, 3 and 4 makes the highest value ? Which makes the lowest ?

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...