Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

Two ladders are propped up against facing walls. The end of the first ladder is 10 metres above the foot of the first wall. The end of the second ladder is 5 metres above the foot of the second. . . .

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

The Egyptians expressed all fractions as the sum of different unit fractions. The Greedy Algorithm might provide us with an efficient way of doing this.

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Can all unit fractions be written as the sum of two unit fractions?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

What is the same and what is different about these circle questions? What connections can you make?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

A circle is inscribed in a triangle which has side lengths of 8, 15 and 17 cm. What is the radius of the circle?

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

Can you find the area of a parallelogram defined by two vectors?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

A jigsaw where pieces only go together if the fractions are equivalent.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

Explore the effect of reflecting in two parallel mirror lines.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Start with two numbers. This is the start of a sequence. The next number is the average of the last two numbers. Continue the sequence. What will happen if you carry on for ever?

Each of the following shapes is made from arcs of a circle of radius r. What is the perimeter of a shape with 3, 4, 5 and n "nodes".

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

Chris and Jo put two red and four blue ribbons in a box. They each pick a ribbon from the box without looking. Jo wins if the two ribbons are the same colour. Is the game fair?

A plastic funnel is used to pour liquids through narrow apertures. What shape funnel would use the least amount of plastic to manufacture for any specific volume ?