Two ladders are propped up against facing walls. The end of the first ladder is 10 metres above the foot of the first wall. The end of the second ladder is 5 metres above the foot of the second. . . .

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

A square of area 40 square cms is inscribed in a semicircle. Find the area of the square that could be inscribed in a circle of the same radius.

Explore the effect of combining enlargements.

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

What is the same and what is different about these circle questions? What connections can you make?

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

A circle is inscribed in a triangle which has side lengths of 8, 15 and 17 cm. What is the radius of the circle?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

Can you find the area of a parallelogram defined by two vectors?

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Use the differences to find the solution to this Sudoku.

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

The diagonals of a trapezium divide it into four parts. Can you create a trapezium where three of those parts are equal in area?

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

An observer is on top of a lighthouse. How far from the foot of the lighthouse is the horizon that the observer can see?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

The clues for this Sudoku are the product of the numbers in adjacent squares.

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

A plastic funnel is used to pour liquids through narrow apertures. What shape funnel would use the least amount of plastic to manufacture for any specific volume ?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

How many different symmetrical shapes can you make by shading triangles or squares?

Start with two numbers. This is the start of a sequence. The next number is the average of the last two numbers. Continue the sequence. What will happen if you carry on for ever?

Your school has been left a million pounds in the will of an ex- pupil. What model of investment and spending would you use in order to ensure the best return on the money?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

How many solutions can you find to this sum? Each of the different letters stands for a different number.