Can all unit fractions be written as the sum of two unit fractions?

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

The Egyptians expressed all fractions as the sum of different unit fractions. The Greedy Algorithm might provide us with an efficient way of doing this.

A jigsaw where pieces only go together if the fractions are equivalent.

Can you see how to build a harmonic triangle? Can you work out the next two rows?

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

Ben passed a third of his counters to Jack, Jack passed a quarter of his counters to Emma and Emma passed a fifth of her counters to Ben. After this they all had the same number of counters.

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

Is there an efficient way to work out how many factors a large number has?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Explore the effect of combining enlargements.

Can you describe this route to infinity? Where will the arrows take you next?

Explore the effect of reflecting in two parallel mirror lines.

Can you find the area of a parallelogram defined by two vectors?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

Can you find six numbers to go in the Daisy from which you can make all the numbers from 1 to a number bigger than 25?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?