Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

A car's milometer reads 4631 miles and the trip meter has 173.3 on it. How many more miles must the car travel before the two numbers contain the same digits in the same order?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

If a sum invested gains 10% each year how long before it has doubled its value?

A 2-Digit number is squared. When this 2-digit number is reversed and squared, the difference between the squares is also a square. What is the 2-digit number?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

Can you find the area of a parallelogram defined by two vectors?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

Rectangle PQRS has X and Y on the edges. Triangles PQY, YRX and XSP have equal areas. Prove X and Y divide the sides of PQRS in the golden ratio.

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

There are lots of different methods to find out what the shapes are worth - how many can you find?

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

Explore the effect of reflecting in two parallel mirror lines.

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...

Explore the effect of combining enlargements.

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Can you describe this route to infinity? Where will the arrows take you next?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

What is the same and what is different about these circle questions? What connections can you make?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.