Find the decimal equivalents of the fractions one ninth, one ninety ninth, one nine hundred and ninety ninth etc. Explain the pattern you get and generalise.

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Can you explain the surprising results Jo found when she calculated the difference between square numbers?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

Can you describe this route to infinity? Where will the arrows take you next?

Can you find the area of a parallelogram defined by two vectors?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

The diagram illustrates the formula: 1 + 3 + 5 + ... + (2n - 1) = n² Use the diagram to show that any odd number is the difference of two squares.

What does this number mean ? Which order of 1, 2, 3 and 4 makes the highest value ? Which makes the lowest ?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

What is the largest number which, when divided into 1905, 2587, 3951, 7020 and 8725 in turn, leaves the same remainder each time?

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

Which has the greatest area, a circle or a square inscribed in an isosceles, right angle triangle?

Explore when it is possible to construct a circle which just touches all four sides of a quadrilateral.

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

A circle is inscribed in a triangle which has side lengths of 8, 15 and 17 cm. What is the radius of the circle?

What is the same and what is different about these circle questions? What connections can you make?

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

A napkin is folded so that a corner coincides with the midpoint of an opposite edge . Investigate the three triangles formed .

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

Explore the effect of reflecting in two parallel mirror lines.

How many different symmetrical shapes can you make by shading triangles or squares?

A hexagon, with sides alternately a and b units in length, is inscribed in a circle. How big is the radius of the circle?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

A 1 metre cube has one face on the ground and one face against a wall. A 4 metre ladder leans against the wall and just touches the cube. How high is the top of the ladder above the ground?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

Triangle ABC is isosceles while triangle DEF is equilateral. Find one angle in terms of the other two.

Show that is it impossible to have a tetrahedron whose six edges have lengths 10, 20, 30, 40, 50 and 60 units...