There are lots of different methods to find out what the shapes are worth - how many can you find?

Many numbers can be expressed as the difference of two perfect squares. What do you notice about the numbers you CANNOT make?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

A car's milometer reads 4631 miles and the trip meter has 173.3 on it. How many more miles must the car travel before the two numbers contain the same digits in the same order?

All CD Heaven stores were given the same number of a popular CD to sell for £24. In their two week sale each store reduces the price of the CD by 25% ... How many CDs did the store sell at. . . .

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

A game for 2 or more people, based on the traditional card game Rummy. Players aim to make two `tricks', where each trick has to consist of a picture of a shape, a name that describes that shape, and. . . .

In 15 years' time my age will be the square of my age 15 years ago. Can you work out my age, and when I had other special birthdays?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Is there a relationship between the coordinates of the endpoints of a line and the number of grid squares it crosses?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

Which set of numbers that add to 10 have the largest product?

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

Choose four consecutive whole numbers. Multiply the first and last numbers together. Multiply the middle pair together. What do you notice?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

If the hypotenuse (base) length is 100cm and if an extra line splits the base into 36cm and 64cm parts, what were the side lengths for the original right-angled triangle?

A mother wants to share a sum of money by giving each of her children in turn a lump sum plus a fraction of the remainder. How can she do this in order to share the money out equally?

A circle of radius r touches two sides of a right angled triangle, sides x and y, and has its centre on the hypotenuse. Can you prove the formula linking x, y and r?

Use the differences to find the solution to this Sudoku.

The clues for this Sudoku are the product of the numbers in adjacent squares.

Play the divisibility game to create numbers in which the first two digits make a number divisible by 2, the first three digits make a number divisible by 3...

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Can you find the area of a parallelogram defined by two vectors?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Given an equilateral triangle inside an isosceles triangle, can you find a relationship between the angles?

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

What angle is needed for a ball to do a circuit of the billiard table and then pass through its original position?

Have a go at creating these images based on circles. What do you notice about the areas of the different sections?

How many different symmetrical shapes can you make by shading triangles or squares?

Explore the effect of combining enlargements.

Can you describe this route to infinity? Where will the arrows take you next?

Explore the effect of reflecting in two parallel mirror lines.

If you are given the mean, median and mode of five positive whole numbers, can you find the numbers?

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

Manufacturers need to minimise the amount of material used to make their product. What is the best cross-section for a gutter?

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?