Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

There are lots of different methods to find out what the shapes are worth - how many can you find?

Investigate how you can work out what day of the week your birthday will be on next year, and the year after...

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Which set of numbers that add to 10 have the largest product?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Explore the effect of combining enlargements.

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

Can all unit fractions be written as the sum of two unit fractions?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Explore the effect of reflecting in two parallel mirror lines.

Can you describe this route to infinity? Where will the arrows take you next?

Liam's house has a staircase with 12 steps. He can go down the steps one at a time or two at time. In how many different ways can Liam go down the 12 steps?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Water freezes at 0°Celsius (32°Fahrenheit) and boils at 100°C (212°Fahrenheit). Is there a temperature at which Celsius and Fahrenheit readings are the same?

An aluminium can contains 330 ml of cola. If the can's diameter is 6 cm what is the can's height?

Some people offer advice on how to win at games of chance, or how to influence probability in your favour. Can you decide whether advice is good or not?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Can you find rectangles where the value of the area is the same as the value of the perimeter?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

If you move the tiles around, can you make squares with different coloured edges?

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

A decorator can buy pink paint from two manufacturers. What is the least number he would need of each type in order to produce different shades of pink.

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?

A jigsaw where pieces only go together if the fractions are equivalent.

Sissa cleverly asked the King for a reward that sounded quite modest but turned out to be rather large...

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

Is there an efficient way to work out how many factors a large number has?

The number 2.525252525252.... can be written as a fraction. What is the sum of the denominator and numerator?

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?