Think of two whole numbers under 10, and follow the steps. I can work out both your numbers very quickly. How?

Five children went into the sweet shop after school. There were choco bars, chews, mini eggs and lollypops, all costing under 50p. Suggest a way in which Nathan could spend all his money.

There are lots of different methods to find out what the shapes are worth - how many can you find?

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Can you arrange these numbers into 7 subsets, each of three numbers, so that when the numbers in each are added together, they make seven consecutive numbers?

If: A + C = A; F x D = F; B - G = G; A + H = E; B / H = G; E - G = F and A-H represent the numbers from 0 to 7 Find the values of A, B, C, D, E, F and H.

Which set of numbers that add to 10 have the largest product?

Can all unit fractions be written as the sum of two unit fractions?

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

A car's milometer reads 4631 miles and the trip meter has 173.3 on it. How many more miles must the car travel before the two numbers contain the same digits in the same order?

There is a particular value of x, and a value of y to go with it, which make all five expressions equal in value, can you find that x, y pair ?

Imagine you have a large supply of 3kg and 8kg weights. How many of each weight would you need for the average (mean) of the weights to be 6kg? What other averages could you have?

Start with two numbers and generate a sequence where the next number is the mean of the last two numbers...

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

Explore the effect of reflecting in two parallel mirror lines.

Explore the effect of combining enlargements.

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Can you find an efficient method to work out how many handshakes there would be if hundreds of people met?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

Many numbers can be expressed as the sum of two or more consecutive integers. For example, 15=7+8 and 10=1+2+3+4. Can you say which numbers can be expressed in this way?

Can you see how to build a harmonic triangle? Can you work out the next two rows?

Four bags contain a large number of 1s, 3s, 5s and 7s. Pick any ten numbers from the bags above so that their total is 37.

Can you guarantee that, for any three numbers you choose, the product of their differences will always be an even number?

The clues for this Sudoku are the product of the numbers in adjacent squares.

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

The area of a square inscribed in a circle with a unit radius is, satisfyingly, 2. What is the area of a regular hexagon inscribed in a circle with a unit radius?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

An investigation involving adding and subtracting sets of consecutive numbers. Lots to find out, lots to explore.

Can you describe this route to infinity? Where will the arrows take you next?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

Do you know a quick way to check if a number is a multiple of two? How about three, four or six?

Do you notice anything about the solutions when you add and/or subtract consecutive negative numbers?

Different combinations of the weights available allow you to make different totals. Which totals can you make?

What is the greatest volume you can get for a rectangular (cuboid) parcel if the maximum combined length and girth are 2 metres?

Each of the following shapes is made from arcs of a circle of radius r. What is the perimeter of a shape with 3, 4, 5 and n "nodes".

A country has decided to have just two different coins, 3z and 5z coins. Which totals can be made? Is there a largest total that cannot be made? How do you know?

Use the differences to find the solution to this Sudoku.

Can you find rectangles where the value of the area is the same as the value of the perimeter?

Here is a chance to create some attractive images by rotating shapes through multiples of 90 degrees, or 30 degrees, or 72 degrees or...

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

If it takes four men one day to build a wall, how long does it take 60,000 men to build a similar wall?

My two digit number is special because adding the sum of its digits to the product of its digits gives me my original number. What could my number be?

Some 4 digit numbers can be written as the product of a 3 digit number and a 2 digit number using the digits 1 to 9 each once and only once. The number 4396 can be written as just such a product. Can. . . .

Mathematicians are always looking for efficient methods for solving problems. How efficient can you be?

Is it always possible to combine two paints made up in the ratios 1:x and 1:y and turn them into paint made up in the ratio a:b ? Can you find an efficent way of doing this?