Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

A toy has a regular tetrahedron, a cube and a base with triangular and square hollows. If you fit a shape into the correct hollow a bell rings. How many times does the bell ring in a complete game?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Can you find all the different ways of lining up these Cuisenaire rods?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Investigate the different ways you could split up these rooms so that you have double the number.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Zumf makes spectacles for the residents of the planet Zargon, who have either 3 eyes or 4 eyes. How many lenses will Zumf need to make all the different orders for 9 families?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

You have 5 darts and your target score is 44. How many different ways could you score 44?

Suppose we allow ourselves to use three numbers less than 10 and multiply them together. How many different products can you find? How do you know you've got them all?

Winifred Wytsh bought a box each of jelly babies, milk jelly bears, yellow jelly bees and jelly belly beans. In how many different ways could she make a jolly jelly feast with 32 legs?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

This challenge extends the Plants investigation so now four or more children are involved.

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

An environment which simulates working with Cuisenaire rods.

Three children are going to buy some plants for their birthdays. They will plant them within circular paths. How could they do this?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

In this investigation, you must try to make houses using cubes. If the base must not spill over 4 squares and you have 7 cubes which stand for 7 rooms, what different designs can you come up with?

Arrange 3 red, 3 blue and 3 yellow counters into a three-by-three square grid, so that there is only one of each colour in every row and every column