The machine I use to produce Braille messages is faulty and one of the pins that makes a raised dot is not working. I typed a short message in Braille. Can you work out what it really says?

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

How many tricolour flags are possible with 5 available colours such that two adjacent stripes must NOT be the same colour. What about 256 colours?

In a league of 5 football teams which play in a round robin tournament show that it is possible for all five teams to be league leaders.

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

I start my journey in Rio de Janeiro and visit all the cities as Hamilton described, passing through Canberra before Madrid, and then returning to Rio. What route could I have taken?

Is it possible to use all 28 dominoes arranging them in squares of four? What patterns can you see in the solution(s)?

If these elves wear a different outfit every day for as many days as possible, how many days can their fun last?

In how many ways can a pound (value 100 pence) be changed into some combination of 1, 2, 5, 10, 20 and 50 pence coins?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Four friends must cross a bridge. How can they all cross it in just 17 minutes?

Seven friends went to a fun fair with lots of scary rides. They decided to pair up for rides until each friend had ridden once with each of the others. What was the total number rides?

A little mouse called Delia lives in a hole in the bottom of a tree.....How many days will it be before Delia has to take the same route again?

Use the clues to work out which cities Mohamed, Sheng, Tanya and Bharat live in.

A man has 5 coins in his pocket. Given the clues, can you work out what the coins are?

Penta people, the Pentominoes, always build their houses from five square rooms. I wonder how many different Penta homes you can create?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

How many different shaped boxes can you design for 36 sweets in one layer? Can you arrange the sweets so that no sweets of the same colour are next to each other in any direction?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

An environment which simulates working with Cuisenaire rods.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Semaphore is a way to signal the alphabet using two flags. You might want to send a message that contains more than just letters. How many other symbols could you send using this code?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Using only the red and white rods, how many different ways are there to make up the other colours of rod?

Four children were sharing a set of twenty-four butterfly cards. Are there any cards they all want? Are there any that none of them want?

George and Jim want to buy a chocolate bar. George needs 2p more and Jim need 50p more to buy it. How much is the chocolate bar?

Here is a collection of puzzles about Sam's shop sent in by club members. Perhaps you can make up more puzzles, find formulas or find general methods.

How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

This challenge extends the Plants investigation so now four or more children are involved.

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

Sam displays cans in 3 triangular stacks. With the same number he could make one large triangular stack or stack them all in a square based pyramid. How many cans are there how were they arranged?

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

Ten cards are put into five envelopes so that there are two cards in each envelope. The sum of the numbers inside it is written on each envelope. What numbers could be inside the envelopes?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

There are 78 prisoners in a square cell block of twelve cells. The clever prison warder arranged them so there were 25 along each wall of the prison block. How did he do it?

Can you rearrange the biscuits on the plates so that the three biscuits on each plate are all different and there is no plate with two biscuits the same as two biscuits on another plate?