Have a go at this game which involves throwing two dice and adding their totals. Where should you place your counters to be more likely to win?

Terry and Ali are playing a game with three balls. Is it fair that Terry wins when the middle ball is red?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Find all the numbers that can be made by adding the dots on two dice.

If you had any number of ordinary dice, what are the possible ways of making their totals 6? What would the product of the dice be each time?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

Investigate the different sounds you can make by putting the owls and donkeys on the wheel.

This challenge extends the Plants investigation so now four or more children are involved.

How many different rhythms can you make by putting two drums on the wheel?

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

Can you find all the different ways of lining up these Cuisenaire rods?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

An environment which simulates working with Cuisenaire rods.

Arrange the numbers 1 to 6 in each set of circles below. The sum of each side of the triangle should equal the number in its centre.

Place the digits 1 to 9 into the circles so that each side of the triangle adds to the same total.

Imagine that the puzzle pieces of a jigsaw are roughly a rectangular shape and all the same size. How many different puzzle pieces could there be?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

Start with three pairs of socks. Now mix them up so that no mismatched pair is the same as another mismatched pair. Is there more than one way to do it?

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

A little mouse called Delia lives in a hole in the bottom of a tree.....How many days will it be before Delia has to take the same route again?

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Tim had nine cards each with a different number from 1 to 9 on it. How could he have put them into three piles so that the total in each pile was 15?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?

In this maze of hexagons, you start in the centre at 0. The next hexagon must be a multiple of 2 and the next a multiple of 5. What are the possible paths you could take?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

My coat has three buttons. How many ways can you find to do up all the buttons?

In this challenge, buckets come in five different sizes. If you choose some buckets, can you investigate the different ways in which they can be filled?

Can you fill in the empty boxes in the grid with the right shape and colour?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

When intergalactic Wag Worms are born they look just like a cube. Each year they grow another cube in any direction. Find all the shapes that five-year-old Wag Worms can be.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

There were chews for 2p, mini eggs for 3p, Chocko bars for 5p and lollypops for 7p in the sweet shop. What could each of the children buy with their money?

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?