Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Investigate the different sounds you can make by putting the owls and donkeys on the wheel.

How many different rhythms can you make by putting two drums on the wheel?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

A toy has a regular tetrahedron, a cube and a base with triangular and square hollows. If you fit a shape into the correct hollow a bell rings. How many times does the bell ring in a complete game?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

How many triangles can you make using sticks that are 3cm, 4cm and 5cm long?

Here are some rods that are different colours. How could I make a dark green rod using yellow and white rods?

Terry and Ali are playing a game with three balls. Is it fair that Terry wins when the middle ball is red?

Use the interactivity to help get a feel for this problem and to find out all the possible ways the balls could land.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Can you find all the different ways of lining up these Cuisenaire rods?

How many different ways can you find to join three equilateral triangles together? Can you convince us that you have found them all?

In the planet system of Octa the planets are arranged in the shape of an octahedron. How many different routes could be taken to get from Planet A to Planet Zargon?

Ana and Ross looked in a trunk in the attic. They found old cloaks and gowns, hats and masks. How many possible costumes could they make?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

In your bank, you have three types of coins. The number of spots shows how much they are worth. Can you choose coins to exchange with the groups given to make the same total?

This activity investigates how you might make squares and pentominoes from Polydron.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

A little mouse called Delia lives in a hole in the bottom of a tree.....How many days will it be before Delia has to take the same route again?

Investigate the different ways you could split up these rooms so that you have double the number.

If we had 16 light bars which digital numbers could we make? How will you know you've found them all?

You cannot choose a selection of ice cream flavours that includes totally what someone has already chosen. Have a go and find all the different ways in which seven children can have ice cream.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

How many ways can you find of tiling the square patio, using square tiles of different sizes?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

If you have three circular objects, you could arrange them so that they are separate, touching, overlapping or inside each other. Can you investigate all the different possibilities?

This challenge extends the Plants investigation so now four or more children are involved.

When newspaper pages get separated at home we have to try to sort them out and get things in the correct order. How many ways can we arrange these pages so that the numbering may be different?

There are to be 6 homes built on a new development site. They could be semi-detached, detached or terraced houses. How many different combinations of these can you find?

The challenge here is to find as many routes as you can for a fence to go so that this town is divided up into two halves, each with 8 blocks.

This challenging activity involves finding different ways to distribute fifteen items among four sets, when the sets must include three, four, five and six items.

Place the 16 different combinations of cup/saucer in this 4 by 4 arrangement so that no row or column contains more than one cup or saucer of the same colour.

El Crico the cricket has to cross a square patio to get home. He can jump the length of one tile, two tiles and three tiles. Can you find a path that would get El Crico home in three jumps?

How many ways can you find to do up all four buttons on my coat? How about if I had five buttons? Six ...?

In a bowl there are 4 Chocolates, 3 Jellies and 5 Mints. Find a way to share the sweets between the three children so they each get the kind they like. Is there more than one way to do it?

You have two egg timers. One takes 4 minutes exactly to empty and the other takes 7 minutes. What times in whole minutes can you measure and how?

My coat has three buttons. How many ways can you find to do up all the buttons?

Arrange eight of the numbers between 1 and 9 in the Polo Square below so that each side adds to the same total.

An environment which simulates working with Cuisenaire rods.

Lolla bought a balloon at the circus. She gave the clown six coins to pay for it. What could Lolla have paid for the balloon?

Make a pair of cubes that can be moved to show all the days of the month from the 1st to the 31st.

Using all ten cards from 0 to 9, rearrange them to make five prime numbers. Can you find any other ways of doing it?

Use these head, body and leg pieces to make Robot Monsters which are different heights.

Move from the START to the FINISH by moving across or down to the next square. Can you find a route to make these totals?