A game to make and play based on the number line.

Use the tangram pieces to make our pictures, or to design some of your own!

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

How can you make an angle of 60 degrees by folding a sheet of paper twice?

Make a clinometer and use it to help you estimate the heights of tall objects.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

It might seem impossible but it is possible. How can you cut a playing card to make a hole big enough to walk through?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

This package contains hands-on code breaking activities based on the Enigma Schools Project. Suitable for Stages 2, 3 and 4.

In this article for teachers, Bernard uses some problems to suggest that once a numerical pattern has been spotted from a practical starting point, going back to the practical can help explain. . . .

You could use just coloured pencils and paper to create this design, but it will be more eye-catching if you can get hold of hammer, nails and string.

Make some celtic knot patterns using tiling techniques

Make an equilateral triangle by folding paper and use it to make patterns of your own.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Time for a little mathemagic! Choose any five cards from a pack and show four of them to your partner. How can they work out the fifth?

What happens when a procedure calls itself?

These models have appeared around the Centre for Mathematical Sciences. Perhaps you would like to try to make some similar models of your own.

This article for pupils gives an introduction to Celtic knotwork patterns and a feel for how you can draw them.

Learn how to draw circles using Logo. Wait a minute! Are they really circles? If not what are they?

Can you puzzle out what sequences these Logo programs will give? Then write your own Logo programs to generate sequences.

Turn through bigger angles and draw stars with Logo.

Learn about Pen Up and Pen Down in Logo

More Logo for beginners. Now learn more about the REPEAT command.

How many differently shaped rectangles can you build using these equilateral and isosceles triangles? Can you make a square?

Write a Logo program, putting in variables, and see the effect when you change the variables.

This part introduces the use of Logo for number work. Learn how to use Logo to generate sequences of numbers.

Learn to write procedures and build them into Logo programs. Learn to use variables.

More Logo for beginners. Learn to calculate exterior angles and draw regular polygons using procedures and variables.

This is the second in a twelve part introduction to Logo for beginners. In this part you learn to draw polygons.

This article for students gives some instructions about how to make some different braids.

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Delight your friends with this cunning trick! Can you explain how it works?

Galileo, a famous inventor who lived about 400 years ago, came up with an idea similar to this for making a time measuring instrument. Can you turn your pendulum into an accurate minute timer?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

Generate three random numbers to determine the side lengths of a triangle. What triangles can you draw?

You have 27 small cubes, 3 each of nine colours. Use the small cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of every colour.

Interior angles can help us to work out which polygons will tessellate. Can we use similar ideas to predict which polygons combine to create semi-regular solids?

As part of Liverpool08 European Capital of Culture there were a huge number of events and displays. One of the art installations was called "Turning the Place Over". Can you find our how it works?

Here is a chance to create some Celtic knots and explore the mathematics behind them.

Exploring balance and centres of mass can be great fun. The resulting structures can seem impossible. Here are some images to encourage you to experiment with non-breakable objects of your own.

I start with a red, a blue, a green and a yellow marble. I can trade any of my marbles for three others, one of each colour. Can I end up with exactly two marbles of each colour?

A description of how to make the five Platonic solids out of paper.

Draw whirling squares and see how Fibonacci sequences and golden rectangles are connected.

A game in which players take it in turns to choose a number. Can you block your opponent?

I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?