We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this junk?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Can you visualise what shape this piece of paper will make when it is folded?

Make a flower design using the same shape made out of different sizes of paper.

The challenge for you is to make a string of six (or more!) graded cubes.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

These practical challenges are all about making a 'tray' and covering it with paper.

How many models can you find which obey these rules?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Make a cube out of straws and have a go at this practical challenge.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

What do these two triangles have in common? How are they related?

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you fit the tangram pieces into the outline of Mai Ling?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of the rocket?

Make a cube with three strips of paper. Colour three faces or use the numbers 1 to 6 to make a die.