You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this sports car?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this goat and giraffe?

A game to make and play based on the number line.

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of Mai Ling?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Use the tangram pieces to make our pictures, or to design some of your own!

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these rabbits?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of these people?

A jigsaw where pieces only go together if the fractions are equivalent.

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Watch the video to see how to fold a square of paper to create a flower. What fraction of the piece of paper is the small triangle?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of this telephone?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Make a flower design using the same shape made out of different sizes of paper.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

What shape is made when you fold using this crease pattern? Can you make a ring design?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Make a cube out of straws and have a go at this practical challenge.