You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

A jigsaw where pieces only go together if the fractions are equivalent.

Watch the video to see how to fold a square of paper to create a flower. What fraction of the piece of paper is the small triangle?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of Mai Ling?

A game to make and play based on the number line.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Use the tangram pieces to make our pictures, or to design some of your own!

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Make a cube out of straws and have a go at this practical challenge.

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

I start with a red, a green and a blue marble. I can trade any of my marbles for two others, one of each colour. Can I end up with five more blue marbles than red after a number of such trades?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Can you fit the tangram pieces into the outline of this junk?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Ming?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Can you fit the tangram pieces into the outline of these convex shapes?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Can you fit the tangram pieces into the outline of this sports car?

What is the greatest number of squares you can make by overlapping three squares?