How many models can you find which obey these rules?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

These practical challenges are all about making a 'tray' and covering it with paper.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

An activity making various patterns with 2 x 1 rectangular tiles.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

This activity investigates how you might make squares and pentominoes from Polydron.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Can you make the birds from the egg tangram?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Delight your friends with this cunning trick! Can you explain how it works?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.