The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

An activity making various patterns with 2 x 1 rectangular tiles.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

These practical challenges are all about making a 'tray' and covering it with paper.

How many models can you find which obey these rules?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Delight your friends with this cunning trick! Can you explain how it works?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of these rabbits?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Can you make the birds from the egg tangram?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Make a cube out of straws and have a go at this practical challenge.

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?