This is a simple paper-folding activity that gives an intriguing result which you can then investigate further.

How can you make a curve from straight strips of paper?

Using these kite and dart templates, you could try to recreate part of Penrose's famous tessellation or design one yourself.

Here are some ideas to try in the classroom for using counters to investigate number patterns.

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

Follow these instructions to make a three-piece and/or seven-piece tangram.

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

Can you cut up a square in the way shown and make the pieces into a triangle?

Follow these instructions to make a five-pointed snowflake from a square of paper.

Make a cube with three strips of paper. Colour three faces or use the numbers 1 to 6 to make a die.

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Surprise your friends with this magic square trick.

Did you know mazes tell stories? Find out more about mazes and make one of your own.

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Make a mobius band and investigate its properties.

It's hard to make a snowflake with six perfect lines of symmetry, but it's fun to try!

Have you noticed that triangles are used in manmade structures? Perhaps there is a good reason for this? 'Test a Triangle' and see how rigid triangles are.

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of the telescope and microscope?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outlines of these people?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Make a cube out of straws and have a go at this practical challenge.

Can you make the birds from the egg tangram?

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outlines of these clocks?