Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Here is a version of the game 'Happy Families' for you to make and play.

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of Mai Ling?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

What do these two triangles have in common? How are they related?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you make the birds from the egg tangram?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

These practical challenges are all about making a 'tray' and covering it with paper.

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of this junk?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you cut up a square in the way shown and make the pieces into a triangle?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of these convex shapes?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Can you fit the tangram pieces into the outline of this sports car?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of Granma T?

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

Make a cube out of straws and have a go at this practical challenge.

If you'd like to know more about Primary Maths Masterclasses, this is the package to read! Find out about current groups in your region or how to set up your own.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.