Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you cut up a square in the way shown and make the pieces into a triangle?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you fit the tangram pieces into the outline of these rabbits?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of these convex shapes?

Make a cube out of straws and have a go at this practical challenge.

Make a cube with three strips of paper. Colour three faces or use the numbers 1 to 6 to make a die.

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of Mai Ling?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Exploring and predicting folding, cutting and punching holes and making spirals.

Make a flower design using the same shape made out of different sizes of paper.

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this plaque design?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you visualise what shape this piece of paper will make when it is folded?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the chairs?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Can you fit the tangram pieces into the outlines of the workmen?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Have you noticed that triangles are used in manmade structures? Perhaps there is a good reason for this? 'Test a Triangle' and see how rigid triangles are.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

Surprise your friends with this magic square trick.

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

Make a mobius band and investigate its properties.