Can you fit the tangram pieces into the outlines of the candle and sundial?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outlines of the workmen?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you fit the tangram pieces into the outline of the rocket?

Can you cut up a square in the way shown and make the pieces into a triangle?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

Can you visualise what shape this piece of paper will make when it is folded?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you make the birds from the egg tangram?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you fit the tangram pieces into the outline of the telescope and microscope?

What do these two triangles have in common? How are they related?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

A game to make and play based on the number line.

Here is a version of the game 'Happy Families' for you to make and play.

Can you fit the tangram pieces into the outline of Mai Ling?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you fit the tangram pieces into the outline of these rabbits?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Can you fit the tangram pieces into the outline of Little Fung at the table?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of these convex shapes?