Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of Mai Ling?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of this sports car?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of this junk?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of these convex shapes?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

What shape is made when you fold using this crease pattern? Can you make a ring design?

Exploring and predicting folding, cutting and punching holes and making spirals.

Make a cube out of straws and have a go at this practical challenge.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Make a flower design using the same shape made out of different sizes of paper.

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you visualise what shape this piece of paper will make when it is folded?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?