How can you make an angle of 60 degrees by folding a sheet of paper twice?

Make a clinometer and use it to help you estimate the heights of tall objects.

Make an equilateral triangle by folding paper and use it to make patterns of your own.

Did you know mazes tell stories? Find out more about mazes and make one of your own.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

An activity making various patterns with 2 x 1 rectangular tiles.

Can you make the birds from the egg tangram?

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

More Logo for beginners. Learn to calculate exterior angles and draw regular polygons using procedures and variables.

Turn through bigger angles and draw stars with Logo.

Exploring and predicting folding, cutting and punching holes and making spirals.

What do these two triangles have in common? How are they related?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Make a cube out of straws and have a go at this practical challenge.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

If you'd like to know more about Primary Maths Masterclasses, this is the package to read! Find out about current groups in your region or how to set up your own.

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Can you fit the tangram pieces into the outline of Little Fung at the table?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

How many models can you find which obey these rules?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Watch the video to see how to fold a square of paper to create a flower. What fraction of the piece of paper is the small triangle?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

How can you make a curve from straight strips of paper?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

This is a simple paper-folding activity that gives an intriguing result which you can then investigate further.