Can you fit the tangram pieces into the outline of Mai Ling?

Here is a version of the game 'Happy Families' for you to make and play.

Can you fit the tangram pieces into the outline of this junk?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Can you fit the tangram pieces into the outline of this sports car?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of the rocket?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of Granma T?

Can you make the birds from the egg tangram?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Make a cube out of straws and have a go at this practical challenge.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?