Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of Little Ming?

Make a cube with three strips of paper. Colour three faces or use the numbers 1 to 6 to make a die.

Follow these instructions to make a five-pointed snowflake from a square of paper.

It's hard to make a snowflake with six perfect lines of symmetry, but it's fun to try!

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Exploring and predicting folding, cutting and punching holes and making spirals.

Make a cube out of straws and have a go at this practical challenge.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

The challenge for you is to make a string of six (or more!) graded cubes.

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of this junk?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of the rocket?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

A brief video looking at how you can sometimes use symmetry to distinguish knots. Can you use this idea to investigate the differences between the granny knot and the reef knot?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of these convex shapes?

Reasoning about the number of matches needed to build squares that share their sides.

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

What is the greatest number of squares you can make by overlapping three squares?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!