What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of the child walking home from school?

Here is a version of the game 'Happy Families' for you to make and play.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

A game to make and play based on the number line.

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How can you make an angle of 60 degrees by folding a sheet of paper twice?

Can you fit the tangram pieces into the outline of the rocket?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Can you fit the tangram pieces into the outline of Mai Ling?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Can you fit the tangram pieces into the outline of Little Ming?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of these rabbits?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you deduce the pattern that has been used to lay out these bottle tops?

Can you fit the tangram pieces into the outlines of the chairs?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Use the tangram pieces to make our pictures, or to design some of your own!

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

How many models can you find which obey these rules?

Watch the video to see how to fold a square of paper to create a flower. What fraction of the piece of paper is the small triangle?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Here are some ideas to try in the classroom for using counters to investigate number patterns.

Can you fit the tangram pieces into the outline of Granma T?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

These practical challenges are all about making a 'tray' and covering it with paper.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Can you make the birds from the egg tangram?