How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Here is a version of the game 'Happy Families' for you to make and play.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you make the birds from the egg tangram?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

These practical challenges are all about making a 'tray' and covering it with paper.

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

An activity making various patterns with 2 x 1 rectangular tiles.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Here are some ideas to try in the classroom for using counters to investigate number patterns.

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

How can you make a curve from straight strips of paper?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Make a flower design using the same shape made out of different sizes of paper.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.