This activity investigates how you might make squares and pentominoes from Polydron.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

An activity making various patterns with 2 x 1 rectangular tiles.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

These practical challenges are all about making a 'tray' and covering it with paper.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

How many models can you find which obey these rules?

It's hard to make a snowflake with six perfect lines of symmetry, but it's fun to try!

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Follow these instructions to make a five-pointed snowflake from a square of paper.

Here is a version of the game 'Happy Families' for you to make and play.

Can you make the birds from the egg tangram?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

Cut a square of paper into three pieces as shown. Now,can you use the 3 pieces to make a large triangle, a parallelogram and the square again?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Here are some ideas to try in the classroom for using counters to investigate number patterns.

How can you make an angle of 60 degrees by folding a sheet of paper twice?

Delight your friends with this cunning trick! Can you explain how it works?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

What do these two triangles have in common? How are they related?

Exploring and predicting folding, cutting and punching holes and making spirals.

Make a cube out of straws and have a go at this practical challenge.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

Can you fit the tangram pieces into the outline of this junk?