Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Make a cube out of straws and have a go at this practical challenge.

Here is a version of the game 'Happy Families' for you to make and play.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

A game to make and play based on the number line.

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Exploring and predicting folding, cutting and punching holes and making spirals.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Have you noticed that triangles are used in manmade structures? Perhaps there is a good reason for this? 'Test a Triangle' and see how rigid triangles are.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you make the birds from the egg tangram?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you visualise what shape this piece of paper will make when it is folded?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?