Can you fit the tangram pieces into the outline of this sports car?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of these people?

Make a cube out of straws and have a go at this practical challenge.

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Here is a version of the game 'Happy Families' for you to make and play.

Exploring and predicting folding, cutting and punching holes and making spirals.

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Make a flower design using the same shape made out of different sizes of paper.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?