Here is a version of the game 'Happy Families' for you to make and play.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you make the birds from the egg tangram?

An activity making various patterns with 2 x 1 rectangular tiles.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

These practical challenges are all about making a 'tray' and covering it with paper.

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this plaque design?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the chairs?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

How many models can you find which obey these rules?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Exploring and predicting folding, cutting and punching holes and making spirals.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?