You will need a long strip of paper for this task. Cut it into different lengths. How could you find out how long each piece is?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

What do these two triangles have in common? How are they related?

These practical challenges are all about making a 'tray' and covering it with paper.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

You have a set of the digits from 0 – 9. Can you arrange these in the 5 boxes to make two-digit numbers as close to the targets as possible?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Can you put these shapes in order of size? Start with the smallest.

These pictures show squares split into halves. Can you find other ways?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Exploring balance and centres of mass can be great fun. The resulting structures can seem impossible. Here are some images to encourage you to experiment with non-breakable objects of your own.

Galileo, a famous inventor who lived about 400 years ago, came up with an idea similar to this for making a time measuring instrument. Can you turn your pendulum into an accurate minute timer?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

An activity making various patterns with 2 x 1 rectangular tiles.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Can you make the birds from the egg tangram?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

Here is a version of the game 'Happy Families' for you to make and play.

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

How many models can you find which obey these rules?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

Explore the triangles that can be made with seven sticks of the same length.

If you count from 1 to 20 and clap more loudly on the numbers in the two times table, as well as saying those numbers loudly, which numbers will be loud?

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

If you have ten counters numbered 1 to 10, how many can you put into pairs that add to 10? Which ones do you have to leave out? Why?