Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

You will need a long strip of paper for this task. Cut it into different lengths. How could you find out how long each piece is?

You have a set of the digits from 0 – 9. Can you arrange these in the 5 boxes to make two-digit numbers as close to the targets as possible?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

An activity making various patterns with 2 x 1 rectangular tiles.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you put these shapes in order of size? Start with the smallest.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

What do these two triangles have in common? How are they related?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

Galileo, a famous inventor who lived about 400 years ago, came up with an idea similar to this for making a time measuring instrument. Can you turn your pendulum into an accurate minute timer?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

These pictures show squares split into halves. Can you find other ways?

Here is a version of the game 'Happy Families' for you to make and play.

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Explore the triangles that can be made with seven sticks of the same length.

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

If you count from 1 to 20 and clap more loudly on the numbers in the two times table, as well as saying those numbers loudly, which numbers will be loud?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

Factors and Multiples game for an adult and child. How can you make sure you win this game?

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

These practical challenges are all about making a 'tray' and covering it with paper.

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?