Here is a version of the game 'Happy Families' for you to make and play.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

If you have ten counters numbered 1 to 10, how many can you put into pairs that add to 10? Which ones do you have to leave out? Why?

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

This project challenges you to work out the number of cubes hidden under a cloth. What questions would you like to ask?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

These pictures show squares split into halves. Can you find other ways?

It might seem impossible but it is possible. How can you cut a playing card to make a hole big enough to walk through?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

A game to make and play based on the number line.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

Make an equilateral triangle by folding paper and use it to make patterns of your own.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

You could use just coloured pencils and paper to create this design, but it will be more eye-catching if you can get hold of hammer, nails and string.

Can you make the birds from the egg tangram?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Can you deduce the pattern that has been used to lay out these bottle tops?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

An activity making various patterns with 2 x 1 rectangular tiles.

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

This activity investigates how you might make squares and pentominoes from Polydron.

A game in which players take it in turns to choose a number. Can you block your opponent?

How many models can you find which obey these rules?

If you count from 1 to 20 and clap more loudly on the numbers in the two times table, as well as saying those numbers loudly, which numbers will be loud?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Explore the triangles that can be made with seven sticks of the same length.

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?