Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

This project challenges you to work out the number of cubes hidden under a cloth. What questions would you like to ask?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Try continuing these patterns made from triangles. Can you create your own repeating pattern?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

These models have appeared around the Centre for Mathematical Sciences. Perhaps you would like to try to make some similar models of your own.

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Here is a version of the game 'Happy Families' for you to make and play.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

It might seem impossible but it is possible. How can you cut a playing card to make a hole big enough to walk through?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

These pictures show squares split into halves. Can you find other ways?

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you make dice stairs using the rules stated? How do you know you have all the possible stairs?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

In this article for teachers, Bernard uses some problems to suggest that once a numerical pattern has been spotted from a practical starting point, going back to the practical can help explain. . . .

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Watch the video to see how to fold a square of paper to create a flower. What fraction of the piece of paper is the small triangle?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

You have a set of the digits from 0 – 9. Can you arrange these in the 5 boxes to make two-digit numbers as close to the targets as possible?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

If you have ten counters numbered 1 to 10, how many can you put into pairs that add to 10? Which ones do you have to leave out? Why?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Explore the triangles that can be made with seven sticks of the same length.

You could use just coloured pencils and paper to create this design, but it will be more eye-catching if you can get hold of hammer, nails and string.

If you count from 1 to 20 and clap more loudly on the numbers in the two times table, as well as saying those numbers loudly, which numbers will be loud?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

Can you make the birds from the egg tangram?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Take a counter and surround it by a ring of other counters that MUST touch two others. How many are needed?

An activity making various patterns with 2 x 1 rectangular tiles.

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

These squares have been made from Cuisenaire rods. Can you describe the pattern? What would the next square look like?