Can you each work out the number on your card? What do you notice? How could you sort the cards?

If you have ten counters numbered 1 to 10, how many can you put into pairs that add to 10? Which ones do you have to leave out? Why?

Can you order pictures of the development of a frog from frogspawn and of a bean seed growing into a plant?

An activity making various patterns with 2 x 1 rectangular tiles.

Let's say you can only use two different lengths - 2 units and 4 units. Using just these 2 lengths as the edges how many different cuboids can you make?

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Using different numbers of sticks, how many different triangles are you able to make? Can you make any rules about the numbers of sticks that make the most triangles?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

In this article for teachers, Bernard uses some problems to suggest that once a numerical pattern has been spotted from a practical starting point, going back to the practical can help explain. . . .

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How many models can you find which obey these rules?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

These practical challenges are all about making a 'tray' and covering it with paper.

This project challenges you to work out the number of cubes hidden under a cloth. What questions would you like to ask?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

The ancient Egyptians were said to make right-angled triangles using a rope with twelve equal sections divided by knots. What other triangles could you make if you had a rope like this?

How can you put five cereal packets together to make different shapes if you must put them face-to-face?

Ahmed is making rods using different numbers of cubes. Which rod is twice the length of his first rod?

A game in which players take it in turns to choose a number. Can you block your opponent?

Here is a version of the game 'Happy Families' for you to make and play.

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Is there a best way to stack cans? What do different supermarkets do? How high can you safely stack the cans?

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Kate has eight multilink cubes. She has two red ones, two yellow, two green and two blue. She wants to fit them together to make a cube so that each colour shows on each face just once.

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

Can you lay out the pictures of the drinks in the way described by the clue cards?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Exploring balance and centres of mass can be great fun. The resulting structures can seem impossible. Here are some images to encourage you to experiment with non-breakable objects of your own.

It might seem impossible but it is possible. How can you cut a playing card to make a hole big enough to walk through?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Explore the triangles that can be made with seven sticks of the same length.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

These pictures show squares split into halves. Can you find other ways?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

In this town, houses are built with one room for each person. There are some families of seven people living in the town. In how many different ways can they build their houses?

Can you make the birds from the egg tangram?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

This practical investigation invites you to make tessellating shapes in a similar way to the artist Escher.

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?