Here is a version of the game 'Happy Families' for you to make and play.

Can you make the birds from the egg tangram?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you deduce the pattern that has been used to lay out these bottle tops?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

An activity making various patterns with 2 x 1 rectangular tiles.

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Take 5 cubes of one colour and 2 of another colour. How many different ways can you join them if the 5 must touch the table and the 2 must not touch the table?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Make your own double-sided magic square. But can you complete both sides once you've made the pieces?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

In this challenge, you will work in a group to investigate circular fences enclosing trees that are planted in square or triangular arrangements.

You have a set of the digits from 0 – 9. Can you arrange these in the 5 boxes to make two-digit numbers as close to the targets as possible?

Can you each work out the number on your card? What do you notice? How could you sort the cards?

Can you fit the tangram pieces into the outline of Mai Ling?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you split each of the shapes below in half so that the two parts are exactly the same?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Arrange 9 red cubes, 9 blue cubes and 9 yellow cubes into a large 3 by 3 cube. No row or column of cubes must contain two cubes of the same colour.

Can you fit the tangram pieces into the outline of this junk?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

The Man is much smaller than us. Can you use the picture of him next to a mug to estimate his height and how much tea he drinks?

Can you fit the tangram pieces into the outline of this plaque design?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

These pictures show squares split into halves. Can you find other ways?

Can you cut up a square in the way shown and make the pieces into a triangle?

Explore the triangles that can be made with seven sticks of the same length.

Can you fit the tangram pieces into the outline of this telephone?

Can you put these shapes in order of size? Start with the smallest.

Can you fit the tangram pieces into the outline of Granma T?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

We went to the cinema and decided to buy some bags of popcorn so we asked about the prices. Investigate how much popcorn each bag holds so find out which we might have bought.