The class were playing a maths game using interlocking cubes. Can you help them record what happened?

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

Can you see which tile is the odd one out in this design? Using the basic tile, can you make a repeating pattern to decorate our wall?

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

Watch this "Notes on a Triangle" film. Can you recreate parts of the film using cut-out triangles?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Make a cube out of straws and have a go at this practical challenge.

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Can you make the birds from the egg tangram?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this telephone?

Have a go at drawing these stars which use six points drawn around a circle. Perhaps you can create your own designs?

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of this junk?

Have you ever noticed the patterns in car wheel trims? These questions will make you look at car wheels in a different way!

Watch the video to see how to fold a square of paper to create a flower. What fraction of the piece of paper is the small triangle?

Sara and Will were sorting some pictures of shapes on cards. "I'll collect the circles," said Sara. "I'll take the red ones," answered Will. Can you see any cards they would both want?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?

This is a simple paper-folding activity that gives an intriguing result which you can then investigate further.

How can you make a curve from straight strips of paper?

Make new patterns from simple turning instructions. You can have a go using pencil and paper or with a floor robot.

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

You will need a long strip of paper for this task. Cut it into different lengths. How could you find out how long each piece is?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

In this activity focusing on capacity, you will need a collection of different jars and bottles.