Can you each work out what shape you have part of on your card? What will the rest of it look like?

If these balls are put on a line with each ball touching the one in front and the one behind, which arrangement makes the shortest line of balls?

Sara and Will were sorting some pictures of shapes on cards. "I'll collect the circles," said Sara. "I'll take the red ones," answered Will. Can you see any cards they would both want?

Cut a square of paper into three pieces as shown. Now,can you use the 3 pieces to make a large triangle, a parallelogram and the square again?

If you'd like to know more about Primary Maths Masterclasses, this is the package to read! Find out about current groups in your region or how to set up your own.

Can you lay out the pictures of the drinks in the way described by the clue cards?

What is the greatest number of squares you can make by overlapping three squares?

These pictures show squares split into halves. Can you find other ways?

Can you make a rectangle with just 2 dominoes? What about 3, 4, 5, 6, 7...?

This practical problem challenges you to create shapes and patterns with two different types of triangle. You could even try overlapping them.

Can you make five differently sized squares from the tangram pieces?

A group of children are discussing the height of a tall tree. How would you go about finding out its height?

Arrange your fences to make the largest rectangular space you can. Try with four fences, then five, then six etc.

Can you make the birds from the egg tangram?

Kimie and Sebastian were making sticks from interlocking cubes and lining them up. Can they make their lines the same length? Can they make any other lines?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of the child walking home from school?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you make the most extraordinary, the most amazing, the most unusual patterns/designs from these triangles which are made in a special way?

An activity making various patterns with 2 x 1 rectangular tiles.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Make a cube out of straws and have a go at this practical challenge.

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

Can you see which tile is the odd one out in this design? Using the basic tile, can you make a repeating pattern to decorate our wall?

Ideas for practical ways of representing data such as Venn and Carroll diagrams.

Are all the possible combinations of two shapes included in this set of 27 cards? How do you know?

Kaia is sure that her father has worn a particular tie twice a week in at least five of the last ten weeks, but her father disagrees. Who do you think is right?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you fit the tangram pieces into the outline of this junk?

This problem focuses on Dienes' Logiblocs. What is the same and what is different about these pairs of shapes? Can you describe the shapes in the picture?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you recreate this Indian screen pattern? Can you make up similar patterns of your own?

Follow the diagrams to make this patchwork piece, based on an octagon in a square.

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Watch this "Notes on a Triangle" film. Can you recreate parts of the film using cut-out triangles?

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Can you fit the tangram pieces into the outlines of these clocks?

Can you deduce the pattern that has been used to lay out these bottle tops?

The class were playing a maths game using interlocking cubes. Can you help them record what happened?

Watch the video to see how to fold a square of paper to create a flower. What fraction of the piece of paper is the small triangle?

What is the largest number of circles we can fit into the frame without them overlapping? How do you know? What will happen if you try the other shapes?